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ABSTRACT 
Recommendation with multiple objectives is an important but dif-
fcult problem, where the coherent difculty lies in the possible 
conficts between objectives. In this case, multi-objective optimiza-

tion is expected to be Pareto efcient, where no single objective can 
be further improved without hurting the others. However existing 
approaches to Pareto efcient multi-objective recommendation still 
lack good theoretical guarantees. 

In this paper, we propose a general framework for generating 
Pareto efcient recommendations. Assuming that there are formal 
diferentiable formulations for the objectives, we coordinate these 
objectives with a weighted aggregation. Then we propose a condi-
tion ensuring Pareto efciency theoretically and a two-step Pareto 
efcient optimization algorithm. Meanwhile the algorithm can be 
easily adapted for Pareto Frontier generation and fair recommen-

dation selection. We specifcally apply the proposed framework on 
E-Commerce recommendation to optimize GMV and CTR simulta-

neously. Extensive online and ofine experiments are conducted on 
the real-world E-Commerce recommender system and the results 
validate the Pareto efciency of the framework. 

To the best of our knowledge, this work is among the frst to 
provide a Pareto efcient framework for multi-objective recommen-

dation with theoretical guarantees. Moreover, the framework can 
be applied to any other objectives with diferentiable formulations 
and any model with gradients, which shows its strong scalability. 

CCS CONCEPTS 
• Information systems → Learning to rank; Recommender 
systems; • Computing methodologies → Optimization algo-
rithms. 
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Pareto Efciency, Multiple Obecjtive Optimization, Learning to 
Rank, Recommendation 
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1 INTRODUCTION 
Recommender systems are emerging as a crucial role in online 
services and platforms, which prevent users from information over-
load. The recommendation algorithms (for example Learning To 
Rank) generate personalized rankings of items and the top-ranked 
items are recommended to users. Usually, the algorithms need very 
careful designs to fulfll multiple objectives. However, it is dif-

cult to optimize multiple objectives simultaneously, where the core 
difculty lies in the conficts between diferent objectives. In E-
Commerce recommendation, CTR (Click Through Rate) and GMV 
(Gross Merchandise Volume) are two important objectives that are 
not entirely consistent. To validate this inconsistency, we collect 
one-week online data from a real-world E-Commerce platform and 
plot the trends of GMV when CTR . According to the trends re-
fected in Fig. 1, CTR is not entirely consistent with GMV , and 
a CTR-optimal or GMV-optimal recommendation can be rather 
sub-optimal or even bad in terms of the other objective.

Therefore, a solution is considered as optimal for two objectives 
in the sense that no objective can be further improved without 
hurting the other one. This optimality is widely acknowledged in 
multiple objective optimization and named as Pareto efciency or 
Pareto optimality. In the context of Pareto efciency, solution A 
is considered to dominate solution B only when A outperforms B 
on all the objectives. And the aim of Pareto efciency is to fnd 
solutions that are not dominated by any others. 

Existing approaches for Pareto optimization can be categorized 
into two categories: heuristic search and scalarization. Evolutionary 
algorithms are popular choices in heuristic search approaches. How-
ever, heuristic search can not guarantee Pareto efciency, it only 
ensures the resulting solutions are not dominated by each other (but 
still can be dominated by the Pareto efcient solutions) [45]. Unlike 
heuristic search, scalarization transforms multiple objectives into a 
single one with a weighted sum of all the objective functions. With 
proper scalarization, the Pareto efcient solutions can be achieved 
by optimizing the reformulated objective function. However, the 
scalarization weights of objective functions are usually determined 
manually and Pareto efciency is still not guaranteed. To summa-

rize, it is very difcult for existing evolutionary algorithms and 
scalarization algorithms to fnd Pareto efcient solutions with a 
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Figure 1: The trade-of between CTR and GMV. The Pearson 
Correlation Coefcient is -0.343086, with p < 0.01. 

guarantee. Recently, it is pointed out that the Karush-Kuhn-Tucker 
(KKT) conditions can be used to guide the scalarization [11]. We 
build our algorithm upon the KKT conditions and propose a novel 
algorithmic framework that generates the scalarization weights 
with theoretical guarantees. 

Specifcally, we propose a Pareto-Efcient algorithmic frame-

work "PE-LTR" that optimizes multiple objectives with an LTR 
procedure. Given the candidate items generated for each user, PE-
LTR ranks the candidates so that the ranking is Pareto efcient 
with respect to multiple objectives. Assuming that there exist dif-
ferentiable formulations for each objective correspondingly, we 
adopt the scalarization technique to coordinate diferent objectives 
into a single objective function. As stated before, the scalarization 
technique can not guarantee Pareto efciency unless the weights 
are carefully chosen. Therefore, we frst propose a condition for 
the scalarization weights that ensures the solution is Pareto ef-

cient. The condition is equivalent to a constrained optimization 
problem, and we propose an algorithm that solves the problem in 
two steps. First we simplify the problem by relaxing the constraints 
so that an analytic solution is achieved; then we get the feasible 
solution by conducting a projection procedure. With PE-LTR as the 
cornerstone, we provide methods to generate the Pareto Frontier 
and a specifc recommendation, depending on the needs of service 
providers. To generate the Pareto Frontier, one can run PE-LTR 
by evenly set the bounds of the objective scalarization weights. To 
generate a specifc recommendation, one can either run PE-LTR 
once with proper bounds or generate the Pareto Frontier frst and 
choose a "fair" solution with specifc fairness metric. 

In this paper we apply this framework to optimize two important 
objectives for E-Commerce recommendation, i.e. GMV and CTR. 
For E-Commerce platforms, the primary objective is to improve 
the GMV, but too much sacrifce of CTR may cause a severe de-
crease of daily active users (DAU) in the long term. Therefore we 
aim to fnd Pareto efcient solutions with respect to both objec-
tives. We propose two diferentiable formulations for GMV and 
CTR respectively and apply the PE-LTR framework for generat-
ing Pareto-optimal solutions. We conduct extensive experiments 
on a real-world E-Commerce recommender system and compare 
the results with state-of-the-art approaches. The online and ofine 
experimental results both indicate that our solution outperforms 
other baselines signifcantly and the solutions are nearly Pareto 
efcient. 

The contributions of this work are: 

• We propose a general Pareto efcient algorithmic framework 
(PE-LTR) for multi-objective recommendation. The framework 
is both model and objective agnostic, which shows its great 
scalability. 

• We propose a two-step algorithm which theoretically guarantees 
the Pareto efciency. Despite the algorithm is built upon scalar-
ization technique, it difers from other scalarization approaches 
with its theoretical guarantee and its automatic learning of scalar-
ization weights rather than manually assignment. 

• With PE-LTR as the cornerstone, we present how to generate the 
Pareto Frontier and a specifc recommendation. Specifcally, we 
propose to select a fair recommendation from the Pareto Frontier 
with proper fairness metrics. 

• We use E-Commerce recommendation as a specifcation of PE-
LTR, and conduct extensive online and ofine experiments on a 
real-world recommender system. The results indicate that our 
algorithm outperforms other state-of-the-art approaches signif-
cantly and the solutions generated are Pareto efcient. 

• We open-source a large-scale E-Commerce recommendation 
dataset EC-REC, which contains the real records of impressions, 
clicks and purchases. To the best of our knowledge, no public 
dataset includes all three labels and enough features, this dataset 
can be used for further studies. 

2 RELATED WORK 
2.1 Recommendation with Multiple Objectives 
We look at the studies on multi-objective recommendation from 
two aspects, i.e. the objectives concerned and the approaches for 
multi-objective recommendations. 

Despite the recommendation accuracy is the main concern, some 
studies argue that other characteristics such as the availability, prof-
itability, or usefulness should be considered simultaneously [15, 22]. 
Some studies attempt to model the trade-ofs between relevance and 
diversity in recommendation [14, 17, 41]. When multiple objectives 
are concerned, it is expected to get a Pareto efcient recommenda-

tion [27, 28]. Recently, it is pointed out that some multiple objectives 
are related to users [7, 16, 23, 29]. On one hand, diferent objectives 
are related to diferent user behaviors. For example, both clicks and 
hides are considered in LinkedIn feeds [33]. On the other hand, 
the objectives are related to diferent user statuses, for example 
diferent stakeholders [8, 23]. 

The approaches on recommendation with multiple objectives 
can be categorized into evolutionary algorithm [45] and scalar-
ization [38]. The evolutionary algorithm has been used for long-
tail recommendation [35], diversifed recommendation [10], and 
novelty-aware recommendation [28]. And it has also been used for 
Pareto efcient hybridization [28] of multiple recommendation al-
gorithms. Scalarization technique is also used for recommendation 
with multiple objectives [38]. However, existing studies mostly de-
pend on manually assigned weights for scalarization, whose Pareto 
efciency can not be guaranteed. Recently, the KKT conditions 
are used for guiding scalarization techniques [11, 32]. However, 
existing algorithms based on these conditions are limited to the 
unconstrained cases and can not ft the requirements in real-world 
scenarios. 
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2.2 E-Commerce Recommendation 
E-Commerce recommendation is also a popular research topic. 
Some studies adopt economic theory models and Markov chains for 
recommendation [12, 19, 42, 43]. While some other studies focus on 
other aspects in E-Commerce recommendation [1, 30, 34, 40], such 
as feature learning and diversifcation. It is pointed out that a good 
practice in E-Commerce searching is learning to rank [18], which 
also coincides with the motivation of our framework. Usually there 
are multiple stages in E-Commerce recommendation, for example 
clicks and purchases. Therefore the learning-to-rank algorithms 
need to jointly optimize multiple stages [36]. Some studies focus on 
the post-click stage in searching and recommendation. For example, 
the bidding price and revenue are jointly considered with relevance 
[26, 44]. Recently, two studies focus on the connection between 
clicks and purchases in E-Commerce searching and advertising 
[21, 36]. As optimizing clicks and purchases are not entirely con-
sistent, it is necessary to fnd a Pareto efcient trade-of between 
them, which is not considered in previous studies on purchase 
optimization [21, 36]. 

2.3 Learning to Rank 
Learning To Rank (LTR) has been a popular research topic for quite 
a long time. The studies on LTR can be categorized into point-wise, 
pair-wise and list-wise approaches. The point-wise scheme [20] 
predicts the individual instance separately; the pair-wise scheme 
[4, 13] is approximated as a binary classifcation problem, which 
focuses on the relative order of a pair of instances; while the list-
wise scheme [5, 6, 37, 39] directly optimizes the metric of a ranking 
list. Usually, list-wise LTR achieves superior performances than 
other schemes. The typical ranking methods include RankNet [4], 
RankBoost [13], AdaRank [39], LambdaRank [5], ListNet [6] and 
LambdaMART [37]. Due to the similarity between searching and 
recommendation in ranking, LTR approaches are widely used in 
both scenarios. Recently, it is pointed out that LTR is a key com-

ponent in E-Commerce searching [18], which is able to exploit 
multiple user feedback signals for relevance modeling, including 
clicks, add-to-cart ratios, and revenue. 

According to the previous studies, LambdaMART is one of the 
best performing algorithms [36]. As focus of this paper is not about 
ranking model, we choose a simple point-wise ranking model for 
the proposed framework. 

3 PROPOSED FRAMEWORK 
In this section, we frst provide a brief introduction to the concept 
of Pareto efciency. Then we introduce the details of the proposed 
framework, i.e. Pareto-Efcient Learning-to-Rank (PE-LTR). Assum-

ing that there are diferentiable loss functions for multiple objectives 
correspondingly, we propose a condition that guarantees the Pareto 
efciency of the solution. We show that the proposed condition is 
equivalent to a constrained Quadratic Programming problem. Then 
we propose a two-step algorithm to solve this problem. Moreover, 
we provide methods to generate both Pareto Frontier and specifc 
single recommendation with PE-LTR. 

3.1 Preliminary 
First, we provide a brief introduction to Pareto efciency and some 
related concepts. Pareto efciency is an important concept in multi-

ple objective optimization. Given a system which aims to minimize 
a series of objective functions f1, . . . , fK , Pareto efciency is a state 
when it is impossible to improve one objective without hurting 
other objectives in terms of multi-objective optimization. 

Defnition 3.1. Denote the outcomes of two solutions as si = 
j j

(f
1 
i , . . . , f i ) and sj = (f

1 , . . . , f ), si dominates sj if and only if K K 
f
1 
i ≤ f

1

j 
, f

2 
i ≤ f

2

j 
, . . . , f i ≤ f j (for minimization objectives). K K 

The concept of Pareto efciency is built upon the defnition of 
domination: 

Defnition 3.2. A solution si = (f
1 
i , . . . , f i ) is Pareto efcient K 
j j

if there is no other solution sj = (f
1 , . . . , f ) that dominates si .K 

Therefore, a solution that is not Pareto efcient can still be im-

proved for at least one objective without hurting the others, and 
it is always expected to achieve Pareto efcient solutions in multi-

objective optimization. It is worth mentioning that Pareto efcient 
solutions are not unique and the set of all such solutions is named 
as the “Pareto Frontier”. 

3.2 Pareto-Efcient Learning to Rank 
To achieve a Pareto efcient solution, we propose a Learning-to-
Rank scheme that optimizes multiple objectives with the scalar-
ization technique. Assuming that there are K objectives in a given 
recommender system, a model F (θ ) needs to optimize these ob-
jectives simultaneously, where θ denotes the model parameters. 
Without loss of generality, we assume that there exist K diferen-
tiable loss functions Li (θ ), ∀i ∈ {1, . . . , K} for the K objectives 
correspondingly. 

Given the formulations, optimizing i-th objective is equal to min-

imizing Li . However, optimizing these K objectives simultaneously 
is non-trivial, since the optimal solution to one objective is usually 
sub-optimal for another one. Therefore, we use the scalarization 
technique to merge multiple objectives into a single one. Specif-
cally, we aggregate the loss functions Li with ωi , ∀i ∈ {1, . . . , K }: 

KÕ 
L(θ ) = ωi Li (θ )

i =1ÍK
where =1 ωi = 1 and ωi ≥ 0, ∀i ∈ {1, . . . , K }. In real-world i 
scenarios, the objectives may have diferent priorities. In our case, 
we assume that the constraints added to the objectives are pre-
defned boundary constraints, i.e. ωi ≥ ci , ∀i ∈ {1, . . . , K}, where ÍKci is a constant between 0 and 1, and =1 ci ≤ 1.i 

Despite the single-objective formulation, it is not guaranteed that 
the solution to the problem is Pareto efcient, unless proper weights 
are assigned. Then we derive the condition on the scalarization 
weights that ensures the solution is Pareto efcient. 

3.2.1 The Pareto Eficient condition. To get the Pareto efcient solu-
tions for multiple objectives, we attempt to minimize the aggregated 
loss function. Consider the KKT conditions (Karush-Kuhn-Tucher 
Conditions) [2] for the model parameters: ÕK KÕ 

ωi = 1, ∃ωi ≥ ci , i ∈ {1, . . . , K }and ωi ∇θ Li (θ ) = 0, 
i=1 i=1 
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Notations Description 

x 
y ∈ {0, 1} 
z ∈ {0, 1} 
Li (θ ) 
F (θ ) 
θ 
η 
ωi 
ci 

pricej 
 

price
′
i 

∇θ Li (θ ) 
G 
e 

The 
The 
The 
The 
The 
The 
The 
The 
The 
The 
The 
The 
The 
The 

feature vector 
click label 
purchase label 
loss function for i-th objective 
LTR model 
model parameters 
learning rate of F (θ )
weight of i-th objective for scalarization 
boundary constraint for i-th objective 
price of the item in instance x j
price of the item at i-th rank 
gradient of loss Li (θ ) with respect of θ 
stacking matrix of the gradients ∇Li (θ )
vector whose elements are all 1 

Table 1: Notations and Description 

Algorithm 1 Pareto Efcient LTR: 
1: Input: The loss functions of multiple objectives correspond-

ingly: Li (θ ), ∀i ∈ {1, . . . , K}; The scalarization weights ini-
tialized uniformly:

1  ωi = , ∀i ∈ {1, . . . , K}; The bounds  for K
the objectives: ci , ∀i ∈ {1, . . . , K}; 

2: Output: The model parameters θ ; 
3: Get the single aggregated objective function: θ  Í L( ) =

K 
i=1 ω L i i (θ ); 

4: for each batch do 
5: Update the model F (θ ) by optimizing L(θ ) with stochastic 

gradient
   descent:  ∂L(θ )θ = θ − η  ;

6: Run Alg. 2 to update

∂θ
   ω1, . . . , ωK = PECsolverÍ (θ );

7: Aggregate the objectives:  K L(θ ) =
1
ωi Li =  i (θ );

8: end for 

where ∇  Li (θ )θ  is the gradient of Li . Solutions that satisfy this 
condition are referred to as Pareto stationary. The condition can be 
transformed into the following optimization problem: 
ÕK  

 
2

min . 
 ωi ∇  Li (θ )θ  

2

i=1 
(1)ÕK  

s .t . ωi = 1, ωi ≥ ci , ∀i ∈ {1, . . . , K }
i=1 

It has been proven [32] that either the solution to this optimiza-

tion problem is 0 so that the KKT conditions are satisfed or the 
solutions lead to gradient directions that minimizes all the loss 
functions. If the KKT conditions are satisfed, the solution is Pareto 
stationary and also Pareto efcient under realistic and mild con-
ditions [32]. Based on this condition, we propose an algorithmic 
framework named PE-LTR, whose details are illustrated in Alg. 1. 

The framework starts with uniform scalarization weights and 
then updates the model parameters and the scalarization weights 
alternatively. The core part of PE-LTR is the PECsolver, which 
generates scalarization weights by solving the condition in Problem 
(1). Note that the condition is a complex Quadratic Programming 
problem, we present the detailed process of PECsolver in Alg 2. 

It is worth mentioning that the algorithmic framework does not 
rely on specifc formulations of the loss functions or the model 
structures. Any model and formulation with gradients can be easily 
applied to the framework. Despite the algorithms runs with stochas-
tic gradient descent in batches, the algorithm provides a theoretical 
guarantee of convergence as gradient descent [11]. 

3.2.2 The Algorithm for Qadratic Programming. Denote ω̂i as 
ωi − ci , the Pareto efcient condition becomes: ÕK  

min . ∥ (ω̂ 2

i + ci )∇θ Li (θ  ) ∥
2 

i=1 
(2)ÕK  ÕK  

s.t. ω̂i = 1 − ci , ω̂i ≥ 0, ∀i ∈ {1, . . . , K }
i =1 i =1 

The Pareto-Efcient condition is equivalent to Problem 1, how-
ever, it is not a trivial task to solve this problem due to its quadratic 
programming form. Therefore, we propose a two-step algorithm as 
the Pareto efcient condition solver. The algorithm is illustrated in 
Alg. 2. We frst relax the problem by only considering the equality 
constraints and solve the relaxed problem with an analytical solu-
tion. Then we introduce a projection procedure that generates a 
valid solution from the feasible set with all the constraints. 

When all the other constraints are omitted except the equality 
constraints: ÕK  ÕK ÕK  

min . ∥ (ω̂ 2

i + ci )∇θ Li (θ  ) ∥
2
s.t. ω̂i = 1 −  ci (3)

i =1 i=1 i=1 

The solution to the relaxed problem is given by Theorem 3.3. 

Theorem 3.3. The solution to the equality constrained problem 
1(3) is given by ω̃ = T ((M M −) Mz̃)[1 : K], where G K ×m ∈ R is the 

stacking matrix of ∇Li (θ ), e K ∈ R is the vector whose elements 
1are all 1,  K is the concatenated vector of , ˜ K +  c ∈ R ci z ∈ R is the� �Í T 

T 
1

K GG e
concatenated vector of −GG c and − 

1
c=  i , and M is i T .

e 0 

The proof to this theorem is in the appendix. 
However, the solution ωˆ∗ to problem 3 may not be valid since 

the non-negativity constraints are omitted. Therefore, we conduct 
the following projection step to get a valid solution: ÕK  

min . ∥ω̃ − ω̂∗ 2 ∥
2
s.t. ω̃i = 1, ω̃i ≥ 0, ∀i ∈ {1, . . . , K } (4) 

i =1 

This problem is exactly a non-negative least squares problem, 
and can be solved easily with the active set method [3]. Due to 
page limit, we omit the details of the algorithm to Problem 3 1 . The 
complexity of Alg. 2 is mostly determined by the pseudo-inverse 
operation, which relates to the number of objectives. Usually the 
number of objectives is limited, therefore the running time of Alg. 
2 is negligible and the online experiments have verifed this 

4 PARETO FRONTIER GENERATION AND 
SOLUTION SELECTION 

Multiple objective optimization can either be used to fnd a certain 
Pareto solution, or be used to generate a set of solutions to construct 

1
We will include the pseudo codes in a longer version of the paper. 
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Algorithm 2 PECsolver: 
1: Formulate the Pareto Efcient condition as Problem (1); 
2: Solve the relaxed Quadratic Programming in Problem (3) with 

Theorem 3.3; 
3: Get the feasible solution by solving Problem (4); 

the Pareto Frontier. In this section, we introduce the details of 
generating solutions with Alg. 1 for the two cases. 

4.1 Pareto Frontier Generation 
With Alg. 1, we can obtain a Pareto optimal solution given the 
bounds of diferent objectives. However, there are cases when a 
series of Pareto optimal solutions are expected, i.e. the Pareto Fron-
tier. This is straight-forward for the algorithmic framework, we can 
set diferent values to the bounds of the objectives and perform Alg. 
1 with diferent bounds respectively. 

To get a Pareto Frontier, we conduct Alg. 1 for several times, 
and the solution generated with proper bound in each run yields a 
Pareto optimal solution. We choose the bounds properly so that the 
evenly distributed Pareto points make a good evenly distributed 
approximation of the Pareto Frontier. 

4.2 Solution Selection 
In cases when a single recommendation is expected, we need to 
select one certain Pareto optimal solution. When the priorities of 
diferent objectives are available, we can obtain a proper Pareto-
efcient recommendation by setting a proper bound for the objec-
tives and conduct a single run of Alg. 1. 

When the priorities are not available, we can frst generate the 
Pareto Frontier and select a solution that is “fair” for the objectives. 
There are several defnitions of fairness in both economic theories 
and recommendation system context [38]. One of the most intuitive 
metrics is Least Misery, which focuses on the most “miserable” ob-
jective, in our case, a “Least Misery” recommendation is to minimize 
the highest loss function of the objectives: 

min max{L1, L2, . . . , LK } (5) 

Another frequently used measure is fairness marginal utility, i.e., 
to select a solution where the cost of optimizing one objective is 
almost equal to the beneft of the other objectives: 

min.∥∂(L1 · L2 · . . . LK )/∂θ ∥2 (6) 

Given the generated Pareto Frontier, the solution with minimum 
values of Eqn. 5 or Eqn. 6 is selected as the fnal recommendation, 
depending on the choice of fairness. 

5 SPECIFICATION ON E-COMMERCE 
RECOMMENDATION 

Given the algorithmic framework of PE-LTR, we introduce the 
details of its specifcation on E-Commerce recommendation. Two 
of the most important objectives in E-Commerce recommendation 
are GMV and CTR. For E-Commerce platforms, GMV is usually the 
primary objective. However, CTR is a crucial metric for evaluating 
user experiences thus afects the scale of the platform in the long 
term. Therefore, we aim to fnd a recommendation that is Pareto-
Optimal with respect to these two objectives. 

Considering that in real-life environments, the LTR models take 
streaming data as input and updates its parameters in an online fash-
ion. Therefore, the online LTR model usually follows the point-wise 
ranking scheme. We formulate the problem as a binary classifca-
tion problem and two diferentiable loss functions are designed for 
the two objectives correspondingly. 

In E-Commerce recommender systems, user feedbacks can be 
roughly categorized into three types: the impressions, the clicks and 
the purchases. Denote the instances as (x j , yj , zj ), ∀j ∈ [1, . . . , N ], 
given a point-wise ranking model F (θ ), we propose to optimize 
these two objectives, i.e. CTR and GMV. For CTR optimization, we 
aim to minimize: Õ

1 N 
LCT R (θ, x , y, z) = − loд(P (yj |θ, x j ))N 

j=1 

For GMV optimization, we aim to minimize: Õ 
LGMV (θ, x , y, z) = − 

1 N 
h(pr icej ) · loд(P (zj = 1 |θ, x j ))N 

j=1 Õ 
= − 

1 N 
h(pr icej ) · (loд(P (yj = 1 |θ, x j )) + loд(P (zj = 1 |yj = 1)))

N 
j=1 Õ 

= − 
1 N 

h(pr icej ) · (loд(P (yj = 1 |θ, x j ))) + д(pr icej )h(pr icej )N 
j=1 

where h(pricej ) is a concave monotone non-decreasing function 
with respect to pricej , pricej denotes the price of the item in x j . In 
our formulation, we choose h(pricej ) = log(pricej ). And we assume 
P(zj = 1|yj = 1) is irrelevant of the model parameters θ . There-
fore, given a model F (θ ) and the formulation of LCT R (θ , x ,y, z)
and LGMV (θ , x ,y, z), the E-Commerce recommendation problem 
becomes: �

min . LCT R (θ, x , y, z), LGMV (θ, x , y, z) s .t .θ ∈ Rm 

Note that the proposed framework does not rely on specifc 
model structure or the formulations of the losses, it works as long 
as the model has gradients. Thus the formulations of CTR and 
GMV losses are not the focus of this paper, and more carefully 
designed formulations can be acommodated into this framework. 
Meanwhile we do not focus on a specifc LTR model but use three 
diferent typical models for comparison, i.e. Logistic Regression 
(LR), Deep Neural Network (DNN) and Wide&Deep (WDL). The 
DNN model is a three-layer MLP and has a same structure with 
the deep component in the Wide&Deep model. For all the neural 
network components, we choose tanh as the activation function for 
each hidden layer while the fnal layer employs the linear function 
as the output. The comparison between three diferent models is 
illustrated in Fig 5 in the experiments. 

6 EXPERIMENTS 
In this section, we introduce the details of experiments which are 
designed to answer the following research questions: 

• How does the framework perform in comparison with state-
of-the-art CTR/GMV oriented approaches and multiple ob-
jective recommendation algorithms? 

• How is the Pareto efciency of the proposed framework in 
terms of the single recommendation and Pareto Frontier? 
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• How is the scalability of the proposed framework in terms 
of model selection? 

To answer these research questions, we conduct extensive experi-
ments on real-world datasets on a popular E-Commerce website, 
including online and ofine experiments. 

6.1 Datasets 
To the best of our knowledge, there is no publicly available E-
Commerce dataset that contains important features such as price 
and the labels of impression, click and purchase at the same time. 
Therefore, we collect a real-world dataset EC-REC 2 

from a popular 
E-Commerce platform. Due to the huge amount of online data, we 
collect one-week data and sample over seven million impressions 
for ofine experiments, and the dataset will be released to the public 
to support future studies. Meanwhile, we use PE-LTR to serve the 
users and conduct A/B test for online experiments. The features are 
from the user profles and item profles, for example the purchasing 
power of users and the average number of purchases of items. 

6.2 Experimental Settings 
We conduct both ofine and online experiments to validate the ef-
fectiveness of the proposed framework. state-of-the-art approaches 
are selected for comparison. 

6.2.1 Baselines. We select the state-of-the-art recommendation 
approaches for comparison and the baselines can be categorized 
into the three kinds: the typical approaches (CF, LambdaMART), 
the GMV-oriented approaches (LETORIF, MTL-REC), and the ap-
proaches that optimize both objectives (CXR-RL, PO-EA). 

• ItemCF: Item-based Collaborative Filtering [31]. 
• LambdaMART [37] is a state-of-the-art learning-to-rank 
approach. A MART model is used to optimize a diferentiable 
loss for NDCG. However, LambdaMART only concerns with 
clicks relevance, while purchase is not considered. 

• LETORIF [36] is a recent learning-to-rank approach for 
GMV maximization and adopts price*CTR*CVR for ranking, 
where CTR and CVR are predictions from the two separate 
models. 

• MTL-REC: MTL-REC [21] adopts multi-task learning tech-
niques for training both CTR and CVR models. Two models 
share same user and item embeddings and similar neural net-
work structures. The ranking model is also price*CTR*CVR. 

• CXR-RL : CXR-RL [24] is a recent value-aware recommen-

dation algorithm that optimizes CTR and CVR simultane-

ously. CXR is designed as a combination of CTR and CVR. 
CXR-RL uses reinforcement learning techniques to optimize 
CXR, thus achieving a trade-of between CTR and CVR. 

• PO-EA: PO-EA [28] is a state-of-the-art multi-objective rec-
ommendation approach which aims to fnd Pareto efcient 
solutions. PO-EA assumes that diferent elementary algo-
rithms have diferent advantages on the objectives. It aggre-
gates the scores given by multiple elementary algorithms and 
the weights are generated with an evolutionary algorithm. 
The elementary algorithms include LETORIF-CTR, LETORIF, 

2
https://drive.google.com/open?id=1rbidQksa_mLQz-V1d2X43WuUQQVa7P8H, the 
codes will be released if the paper is accepted. 

CXR-RL, PE-LTR-CTR, and PE-LTR-GMV. LETORIF-CTR 
refers to the CTR model in LETORIF. Both PE-LTR-CTR 
and PE-LTR-GMV are PE-LTR models whose boundary con-
straints are added to optimize CTR and GMV correspond-
ingly. The two LTR models are used as elementary algorithms 
for a fair comparison with PE-LTR. 

• PO-EA-CTR, PO-EA-GMV: two solutions generated by 
PO-EA, which focus on CTR and GMV respectively. 

• PE-LTR-CTR, PE-LTR-GMV: two solutions generated by 
PE-LTR, which focus on CTR and GMV respectively. 

6.2.2 Experimental Setings. We adopt two typical IR metrics for 
CTR evaluation, i.e. NDCG and MAP. Meanwhile, we propose two 
GMV variants for both metrics: ÍÕ Õ

1 K n 
=1 payi 1

G-AP@K = i 
; G-MAP@K = G-AP@K 

K n |QR |n=1 q∈QR Õ 
2
payiK 

− 1 G-DCG@K

G-DCG@K = price
′ · ; G-NDCG@K =i 

log
2
(i + 1) G-IDCG@K

i =1 

where QR denotes the set of purchased items, payi = 1/0 denotes 
the whether the item at i-th rank is purchased or not, price′ denotesi
the price of the item at i-th rank, G-IDCG@K denotes the maxi-

mum possible value of G-DCG@K. G-NDCG considers the position 
biased GMV in the list, and prefers higher-ranking items that are 
purchased, while G-MAP considers the number of purchases in 
the recommendation list. For users without purchase records, the 
values of two metrics are both 0. 

6.3 Ofline Experimental Results 
6.3.1 Comparison with baselines. To answer the frst research ques-
tion, we present the comparison on NDCG, MAP and the GMV-

related metrics in Table 2. PE-LTR is the model selected from Pareto 
Front with fairness marginal utility and PO-EA is a PO-EA model 
with comparable CTR metrics with PE-LTR. As shown in the table, 
PE-LTR outperforms other approaches on all GMV related metrics 
and a comparable performance with LambdaMART on CTR re-
lated metrics. Compared with Item-CF and LambdaMART, PE-LTR 
achieves much higher G-NDCG and G-MAP. This is reasonable 
since PE-LTR jointly optimize the GMV and CTR while GMV is 
not optimized in Item-CF and LambdaMART. Meanwhile, PE-LTR 
achieves comparable NDCG and MAP with LambdaMART. In pre-
vious observations on benchmark studies of web search, Lamb-

daMART is usually the best performing method [36, 37]. This indi-
cates the efectiveness of our framework, which not only optimizes 
GMV but also guarantees a high CTR.

Compared with LETORIF, MTL-REC, CXR-RL and PO-EA, PE-
LTR achieves higher G-NDCG and G-MAP, and at a much lower 
cost of CTR. There are several reasons behind this: 

First, compared with LETORIF and MTL-REC, PE-LTR jointly 
learns both objectives with a single model, which allows the model 
to learn clicks and purchases simultaneously; While in LETORIF 
and MTL-REC, two separate models or components are designed 
for clicks and purchases, which may cause some inconsistency. 

Second, compared with CXR-RL and PO-EA, PE-LTR coordinates 
two objectives in a Pareto efcient way. CXR-RL optimizes both 
objectives, yet in a non-Pareto efcient way. Meanwhile, although 
PO-EA attempts to fnd Pareto efcient solutions, it only guarantees 
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Table 2: Comparison between PE-LTR and other baselines in ofline experiments, the values are relative improvements over 
ItemCF. The highest and second highest values are highlighted. All results are statistically signifcant with p < 0.01. 

Approaches G-NDCG@10 G-NDCG@ALL G-MAP@10 G-MAP@ALL NDCG@10 NDCG@ALL MAP@10 MAP@ALL 

LambdaMART 0.7357 -0.0324 -0.0982 -0.0869 0.1602* 0.0849* 0.1503* 0.1531* 
LETORIF 0.1360 0.0660 0.1310 0.1108 -0.0327 -0.0189 -0.0357 -0.0283 
MTL-REC 0.1092 0.0491 0.0952 0.0803 -0.0318 -0.0191 -0.0370 -0.0286 
CXR-RL 0.0851 0.0443 0.0971 0.0796 0.0969 0.0538 0.0965 0.0945 
PO-EA 0.0539 0.0246 0.0541 0.0435 0.0941 0.0510 0.0918 0.0914 
PO-EA-GMV 0.3328 0.1890 0.3912 0.3368 0.0620 0.0319 0.0505 0.0596 
PO-EA-CTR 0.0203 0.0052 0.0142 0.0102 0.1349 0.0744 0.1315 0.1318 
PE-LTR 0.2707 0.1588 0.3292 0.2867 0.1150 0.0617 0.1080 0.1109 
PE-LTR-GMV 0.3629* 0.2088* 0.4311* 0.3747* 0.0620 0.0306 0.0509 0.0589 
PE-LTR-CTR 0.0268 0.0100 0.0231 0.0189 0.1412 0.0772 0.1351 0.1367 

is necessary to jointly consider multiple objectives simultaneously PE-LTR 
PO-EA 

G
M
V

 lo
s
s
 

4.2 4.4 4.6 4.8 5 

PE-LTR 

0.13 
0.19 0.2 0.21 0.22 0.23 

0.16 
and a Pareto efciency recommendation makes it possible to achieve 
high GMV at a low cost of CTR. 

0.15 

6.3.2 The Pareto Eficiency of PE-LTR. To answer the second re-

N
D
C
G

search question, we frst generate the Pareto Frontier of CTR and 
GMV losses by running Alg. 1 with diferent bounds and plot the 0.14 

G-NDCG CTR loss ·10−3 

Figure 2: The left fgure is the comparison between mod-
els generated by PO-EA and PE-LTR; The right fgure is the 
Pareto front of CTR and GMV traning losses in PE-LTR. 

that the fnal solution is selected from a series of solutions that are 
not dominated by each other. We further plot the NDCG versus 
G-NDCG curve of PO-EA and PE-LTR in Fig 2 (Due to page limit, 
we just plot G-NDCG and NDCG in the fgures of the paper, and 
the results are similar for MAP and G-MAP). As the fgure shows, 

0.1any solution generated by PO-EA is not dominated by the other 

Pareto Frontier in Fig 2. It can be observed that the losses under 
diferent constraints basically follow Pareto efciency, i.e. no point 
achieves both lower CTR and GMV losses than other points. When 
the model focuses more on CTR, CTR loss is lower and GMV loss 
is higher, and vice versa. This coincides with the Pareto efcient 
scalarization scheme of the proposed framework. 
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Item-CF 

LambdaMART 
0 

1 2 3 4 5 6 7 8one from PO-EA; and the case is same with PE-LTR. However, we 
observe that the curves of PE-LTR are above the curves of PO-EA, 
which means the solutions from PO-EA are dominated by those 
generated by PE-LTR. Note that two PE-LTR algorithms are already 
used as the elementary components in PO-EA, the comparison 
indicates that the proposed framework is more capable to generate 
Pareto efcient solutions. 

Moreover, the real-world data in E-Commerce platforms may 
not follow the typical i.i.d. assumption. And scalarization weights 
are adjusted every batch in PE-LTR, which allows it to adjust to the 
training data dynamically during the training process. Meanwhile, 
PO-EA requires several well-trained algorithms for aggregation, 
which makes it more difcult to meet the requirements of online 
learning environments. 

We further compare the quality of recommendations at the top of 
the ranking list. Since users usually focus more on the top-ranked 
items, the metrics at the top are more important in recommendation. 
The results are presented in Fig 3 . As shown in the fgures, PE-
LTR outperforms the other baselines on GMV related metrics, and 
at a low cost of CTR. This illustrates the importance of Pareto 
efciency in real-world recommender systems. Optimizing a single 
objective alone may hurt the other objectives severely. Therefore it 

K K 

Figure 3: Comparison between the performances of PE-LTR 
and other baselines at the Top. 

Then we compare the solution of PE-LTR under diferent solution 
selection strategies. We predefne two series of bounds for ctr and 
gmv: (ωctr ≥ 0, omeдaдmv ≥0.8) and (ωctr ≥ 0.8,omeдaдmv ≥ 
0.0), and get two PE-LTRs (PE-LTR-GMV and PE-LTR-CTR) which 
focus on GMV and CTR respectively. Then we choose two PE-LTRs 
(PE-LTR-LM and PE-LTR-MU) from the Pareto Frontier with LM 
fairness and MU fairness. We plot the comparison between these 
PE-LTRs in Fig 4. 

The performances of PE-LTR-CTR and PE-LTR-GMV are consis-
tent with the constraints added to the objectives. Therefore when 
the priority of GMV and CTR are available (i.e. GMV or CTR is 
preferred), the recommendation can be achieved by setting the 
bounds correspondingly. When the priorities are not available, a 
fair solution can be achieved by selecting from Pareto Frontier with 
highest fairness. Despite the performance of selected PE-LTR (PE-
LTR-LM and PE-LTR-MU) is not the best on all metrics, it achieves 
a relatively good trade-of between the two objectives. Comparing 
PE-LTR-LM with PE-LTR-MU, we fnd the two recommendations 
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Figure 4: Comparison between diferent recommendation 
selection strategies in PE-LTR. 

selected with LM and MU fairness are relatively balanced. PE-LTR-
MU outperforms PE-LTR-LM in GMV while PE-LTR-LM is slightly 
better in CTR. 

6.3.3 The Scalability of PE-LTR. To answer the third research ques-
tion, we conduct experiments to show the scalability of PE-LTR in 
terms of model selection. We use LR, DNN and WDL as the model 
in PE-LTR framework, and the details of the models can be found 
in Section 5. We set same bounds for the models and the results are 
plotted in Fig 5. 

0.28 0.005 

0.003 

PE-LTR-CTR 
PE-LTR-GMV 
PE-LTR-MU 
PE-LTR-LM 

Approaches CTR IPV PAY GMV 

CXR-RL 13.68 20.60 -1.027 -3.197 
PO-EA 4.442 8.957 3.399 -3.038 
PE-LTR 13.80* 23.76* 20.09* 3.623* 

Table 3: Comparison between PE-LTR and other baselines 
in online experiments, the values are the relative improve-
ments over LETORIF in percentage. All results are statisti-
cally signifcant with p < 0.01. 

signifcant. We use LETORIF as the baseline, and present the relative 
improvements of compared approaches on LETORIF in the table. 

From the results we observe that our approaches outperform 
other baselines on all the four metrics. This basically coincides 
with the ofine experimental results. Note that PE-LTR achieves 
signifcant improvements on GMV with a high CTR, this illustrates 
the advantage of Pareto efcient recommendation. Meanwhile, PO-
EA requires ofine models for aggregation and can not learn the 
weights online, making it less efective in the experiments. 

7 CONCLUSIONS 
In this paper, we concern with the problem of recommendation with 
multiple objectives. We propose a general algorithmic framework 
that generates Pareto efcient solutions with theoretical guarantees. 
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Figure 5: Comparison between diferent models with PE-
LTR framework. 

Judging from the results, we observe that the model selection has 
an important impact on the performance of PE-LTR. Among the 
three PE-LTR variants, PE-LTR-WDL outperforms the rest and PE-
LTR-DNN outperforms PE-LTR-LR. This is reasonable since neural 
networks capture more complex relationships between features 
than linear models. And Wide&Deep model combines both neural 
networks and linear models into a single model, which enables 
better generalization and memorization for recommendation [9]. 
Therefore, PE-LTR is able to accommodate with varies kinds of 
models and stronger models can lead to better performances. This 
also illustrates the potential of PE-LTR, whose performance can be 
further enhanced by more carefully designed models. 

6.4 Online Experimental Results 
The online experiments are conducted on the real-world E-Commerce 
platform for three days. For online experiments, CTR-only ap-
proaches hurt GMV severely. Therefore, the approaches that only 
concern with CTR are not included in the online experiments. 

We concern with four metrics in the online experiments, i.e. CTR 
(Click Through Rate), IPV (Individual Page View), PAY (number of 
payments) and GMV (Gross Merchandise Volume). We compute 
the average performances of three days and present the results in 
Table 3. Due to the large number of users, the results are statistically 

PE-LTR-LR 
PE-LTR-DNN 
PE-LTR-WDL 

1 2 3 4 5 6 7 8 

0.004 
We propose a theoretical condition ensuring the Pareto efciency, 
and a two-step algorithm which can be further accommodated with 

0.003 
constraints on the objectives. We specifcally apply this framework 
on E-Commerce recommendation to optimize both GMV and CTR 
simultaneously. Extensive experiments have been conducted on a 
real-world E-Commerce recommender system. The experimental 
results validate the efectiveness of the proposed framework. Mean-

while, the framework is model and objective agnostic, which shows 
its strong scalability. 

A APPENDIX 
A.1 The Proofs of Two Theorems 

Proof. The problem in Theorem 3.3 can be written as: 
1 1

min . ω̂ T GGT ω̂ + c T GGT ω̂ + T GGT c
2 
c

2 
s .t . e T ω̂ = 1 − e T c 

We apply the Lagrange multipliers and get the Lagrangian: 

L(ω̂, λ) = 
1 
ω̂ T GGT ω̂ + c T GGT ω̂ + λ(e T ω̂ − 1 + e T c )

2 
The solution to the problem is given by: 

∇ω̂ L(ω̂ , λ) = 0, and ∇λ L(ω̂, λ) = 0, 

therefore the solution can be achieved by solving the linear system: � � � � � � � � 
GGT e x x −GGT c 

= M = 
eT 

0 λ λ 1 − eT c 

. And according to the study on Moore-Penrose inverse [25], the 
solution to this system is � � � � 

x −GGT c 
= (MM T )−1M

λ 1 − eT c 

□ 
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